Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Commun Med (Lond) ; 2: 14, 2022.
Article in English | MEDLINE | ID: covidwho-1860428

ABSTRACT

Background: Vaccine hesitancy - a delay in acceptance or refusal of vaccines despite availability - has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally. In this study, we aim to understand the likely impact of vaccine hesitancy on the control of the COVID-19 pandemic. Methods: We modelled the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission with data on vaccine hesitancy from population surveys. Results: Our simulations suggest that the mortality over a 2-year period could be up to 7.6 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Conclusions: While vaccination is an individual choice, vaccine-hesitant individuals have a substantial impact on the pandemic trajectory, which may challenge current efforts to control COVID-19. In order to prevent such outcomes, addressing vaccine hesitancy with behavioural interventions is an important priority in the control of the COVID-19 pandemic.

2.
Vaccine ; 39(22): 2995-3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1174521

ABSTRACT

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extend a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identify optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We find that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for < 20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.


Subject(s)
COVID-19 , Vaccines , Aged , COVID-19 Vaccines , Humans , Models, Theoretical , Public Health , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL